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1. INTRODUCTION

The infinite fluid-loaded plate is one of the prototype
problems in the field of fluid-structure interaction, and its
time-harmonic response and associated sound radiation have been
studied extensively in the acoustic literature. The standard
texbook of Junger & Feit [13 gives the mathematics and the
physics, and Spicer's [23 intensity vector plots are vivid
illustrations of the main features of the acoustic field. The
transient dynamics and acoustics of the infinite fluid-loaded
plate have not received nearly so much attention despite their
importance as canonical problems in underwater acoustics.

I arham [33 has recently written a Fortran computer program
for calculating the response of, and sound radiation from, an
infinite thin plate which is excited by a unit point impulse.
The program cleverly combines analytical and numerical approxi-
mations to achieve efficient and accurate computations over a
wide range of geometric values and material properties. Many
references to previous theoretical work can be found in Warham's
comprehensive report.

In the small amount of time set aside for this work it was
the aim to (a) extend the range of applicability of Warham's
program by giving the user a choice of transient force excita-
tions; (b) give some numerical results of sound radiation which
demonstrate that Warham's program is a useful contribution to
research in transient fluid-structure interaction; (c) test a
stationary phase approximation to the transient pressure in the
far-field; and (d) take a first stumble in the direction of
developing a software capability for making predictions of
transient sound radiation from, and transient sound scattering
by, submerged elastic structures.

2. PROBLEM FORMULATION

An infinite plate, see Figure 1, lies in the x,y plane.
The upper halfspace contains a fluid and the lower halfspace a
vacuum. The plate is excited by a transient stress distribution
F(r,t), the plate's normal displacement W(r,t) in bending and
the acoustic pressure p(r,z,t)Ep(R,e,t) being required.

The plate's displacement is assumed to satisfy the thin
plate theory of Sophie Germain, viz.

Da21ar2+(l/r)a/8rJ2 W(r,t)+M8 2W(r,t)/at 2 = F(r,t)-p(r,O,t)
(2.1)

where D=Eh3/12(l-a2 ) is the plate's flexural rigidity in which
E is the Young's modulus, a is the Poisson's ratio and h is the
thickness; M=p5h is the plate's mass per unit area in which ps

is the density. The acoustic pressure p(r,z,t) satisfies the
wave equation

[a2/ar2+(l/r)a/ar+8 2/az2Jp(r,z,t) - 8 2p(r,z,t)/c 2at2  (2.2)
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in which c is the velocity of sound in the fluid.

The solution to the above equations proceeds by defining
the Fourier-Bessel transform pair for a quantity U(r,z,t), i.e.

U(r,z,t)= (/2,)f~+ f 9((X,zw)J0 (oLr)exp(-iwt)mdoLdw
(2.3)

U(M,z,w) = _ f0 U(rzt)J0 (oxr)exp(iwt)rdrdt

Thus, after defining the plate's displacement W(r,t) and the
pressure p(r,z,t) by the transforms

W(r,t)= (i/2w)f_- f, W(ml,w)J0(oLr)exp(-iwt)l(dxdw (2.4)

p(r,z,t)= (1/2%)f_ W fW(oL,z,w)J0 (oLr)exp(-wt)xdmdw (2.5)

it is possible to show that

W(o,w) = F(M,w)/(DM4-w 2M-ipw 2y) (2.6)

p((.,z,w) = -ipw 2y F((x,w)exp(iyz)/(D4-w2M-ipw2/Y) (2.7)

in which F(,w) is the transform of the transient stress exci-

tation; y=+(k 2-x2) 12 in order to satisfy the radiation condition;
p is the fluid's density; and k is the acoustic wavenumber, w/c.

The acoustic momentum relation 8p(r,zt)/lz=-pa2W(r,z,t)/at 2 has
been used to ensure continuity of the plate's displacement W(r,t)
and the acoustic particle displacement f(r,z,t) at the plate's
surface, z=O.

The integrals in equations (2.4-2.5) must be evaluated
numerically because closed-form expressions are not available.
Mackertich & Hayek E43 have given analytical approximations to
the acoustic pressure for the specific case of impulse exci-
tation; however, according to Harham some of their approximations
are lacking in accuracy. Despite this (alleged) shortcoming,
Makertich and Hayek have identified correctly much of the physics
of this transient sound radiation problem.

3. TRANSIENT POINT EXCITATIONS

(a) General

For the particular case of a point force, Q(t), excitation
which is located at r-0, viz.

F(r,t) = Q(t)6(r)/2wr (3.1)

the spectral excitation is found from equations (2.3) as

fiw) - F(w) - (I/2w)+$ Q(t)exp(iwt)dt (3.2)
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an excitation which is independent of the wavenumber a.

(b) Impulse

The impulse applied at t=0 is defined as

Q(t) = PS(t) (3.3)

where P is the magnitude of the impulse. Its transform is
obtained from equation (3.2) as

F(w) = P/2w (3.4)

This is the excitation used in Warham's original Fortran program,
which has now been extended to include the transient excitations
described in (c)-(g) below.

(c) Sine Have

The sine wave which is switched on at t=O and switched off
at t=T is defined as

Q(t) = F0sin(w 0 t), for O<t<T (3.5)

Q(t) = 0, for t<0 and t>T

the time for one cycle being 1/f0 =2w/w 0. Its transform is

2 2
F(w) = (F /2w)Eexp(iwT)[iwsin(w T)-w cos(W T)I+w0/(w0 -w

00 0 sw 0T) 0J/ 0
(3.6)

This excitation taken over a half-cycle is sometimes used to

simulate the force due to an elastic impactor.

(d) Squared Sine Have

The squared sine wave which is switched on at t=O and off
at t=T is defined as

Q(t) = F0 sin
2 (w0t), for 0(t<T (3.7)

Q(t) = 0, for t<0 and tT

the time for a half-cycle (one loop) being l/2f 0 =W/w 0. Its

transform is

F(w) = (F0/4wiw)exp(iwT)-lJ (3.8)
2 2

-(F/4w)(exp(iwT)[iwcoswT)+2wsin(2wT))-iw/(4WoW 2

This excitation, taken over a half-cycle, has been recommended by
Akay & Latcha 153 for simulating an elastic impact, because it
gives a smoother acceleration response than does the sine wave.
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(e) Attenuated Sine Have

The attenuated sine wave which is switched on at t=0 and off
at t=T is defined as

Q(t) = F0exp(-at)sin(w0t), for 0<t<T (3.9)

Q(t) = 0, for t<0 and t>T

the time for one cycle being 1/f0=27r/w 0. Its transform is

F(w) = (F0/2w)Eexp(ixT)Cixsin(w0T)-w 0cos(w 0T))+w0 3/(w-
2 )

(3.10)

in which X = w+ia. This is the excitation used by Bolgov &
Nikiforov E63 in their analysis of the impact excited infinite
plate.

(f) Triangular Pulse

The triangular pulse which is switched on at t=0 and off
at t=T is defined as

Q(t) = (2F0/T)t, for t=0<t<T/2
Q(t) = -(2F 0/T)t+2F0 , for T/2<t<T (3.11)

Q(t) = 0, for t<0 and t>T

Its transform is

F(w) = (-2F 0 /2irw2T)El-exp(iwT/2)J 2  (3.12)

Nakayama & Nakamura 173 have used this pulse as an acoustic
excitation in their work on transient sound radiation from
circular plates.

(g) Rectangular Pulse

The square pulse which is switched on at t=0 and off at
t=T is defined as

Q(t) = F0, for 0<t(T (3.13)

Q(t) = 0, for t<0 and t>T

Its transform is

F(w) = (F0/2wiw)Eexp(iwT)-lJ (3.14)

This pulse can be used to simulate a finite width impulse. It
is also the basic component of extended rectangular waveforms,
such as the finite length Walsh functions and pseudo random
binary sequences. It would not be difficult to add these two
waveforms to the list, as their Fourier transforms are known.
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4. APPROXIMATION TO FAR-FIELD PRESSURE

(a) Stationary Phase

If the m-integration in equation (2.5) is done by the
method of stationary phase E13, then the the far-field pressure

Pf(R,8 ,t)=(-p/2vR)f_ w2EF(l0 ,w)/G((xo0 ,wl)expE-iw(t-R/c)]dw

(4.1)
results, where

4_2 2G(m0,w) = Dx0-W M-iPW 1YO
(a0 =k.sin(e) (4.2)

Yo=k.cos(e)

The integral, which is invariant with respect to the factor
t-R/c, can be evaluated simultaneously for equally spaced time
intervals by an application of the fast Fourier transform algor-
ithm. Its use for transient sound radiation calculations does
not appear to have been explored in any detailin the acoustics
literature.

(b) Physical Interpretation

The integration in equation (4.1) can be done by Cauchy's
residue theorem, as there are no branch points to 'muddy the
waters'. The function F( 0 ,w) will introduce some complications

into the analysis, but it is possible to proceed in a cavalier
way by considering only the contribution made by the function
G(mlw), which is responsible for simple poles whose locations

are the roots of the reduced cubic equation

a0 +a1w+a3w3= 0 (4.3)

where

a0 = -ipc/cos8

a1 = -M (4.4)

a3 = (D/c )sin e

At an arbitrary angle e there are, in the absence of
structural damping, three roots of the farm

W I = -2iw i

w2 a Wr+iWi
w3 = -Wr+iW (4.5)

in which wr and wi are positive.

For a 5cm thick steel plate with water above and a vacuum
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below, with constants as defined in Section 5 below, the values
of Wr and wi are

eW10-3 WI10-3fSrX10 3  wixl0 fr

10 983 2.0 150.1
20 253 2.1 40.3
30 119 2.2 18.9
40 72 2.5 11.4
50 51 3.0 8.1
60 40 3.8 6.4
70 35 5.2 5.5
80 34 8.5 5.4
85 37 12.8 5.9
89 55 26.5 8.7

where f r=W r/2w is the oscillating frequency, in kHz. It is easy
to show that the roots may be approximated by the formulae

Wr = c2 (M/D)1 /2/sin 2e
Wi = pc/(2Mcose) (4.6)

for values of 8 less than 700, which shows that while w r depends
on both the mass and stiffness properties of the plate, w i is

controlled by its mass properties. Enthusiasts of infinite plate
problems will recognise the minimum value of w r in the approxi-

mation, viz. wc=c 2 (M/D)I1 2 , as the coincidence frequency, which

can be defined as the frequency at which the phase velocity of
straight-crested waves, on an unloaded plate, has the value of the
speed of sound in the fluid. This frequency is 4.7kHz for a 5cm
thick steel plate in water. At frequencies higher than the coinci-
dence frequency there is a strong lobe in the radiated field when
time-harmonic conditions prevail, the angle at which the lobe

occurs being about 8c=sin 1(wc /w) I 2 Thus, it is possible to
assign meaning to wr as the true frequency of coincidence lobe

radiation at the angle e. See Junger & Feit E13 for a discussion
of coincidence lobe radiation.

Three contours of integration are necessary in order to
evaluate the Fourier integral analytically:

(1) The first, for t<0, is the semicircle in the upper
halfplane, the diameter of which runs along the real w
axis, indenting the poles w2 and w 3. Thus, because
there are no poles enclosed by this contour the
pressure is zero for t(0, which is consistent with
causality.
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(2) The second, for t=0 to R/c, is the semicircle in
the upper halfplane, the diameter of which runs along
the real w axis. Thus the poles v2 and w3 are enclosed.

by the contour. These poles have no separate existence;
rather, they combine to give a real value of pressure
which is proportional to exptwi(t-R/c)]sinEwr (t-R/c)+@J.

Bearing in mind that R is infinite in the far-field,
this is a pressure whose amplitude increases exponen-
tially with time, from zero to a maximum at t=R/c, and
which oscillates at a radian frequency of wr-

(3) The third, for t>R/c, is the semicircle in the
lower halfplane, the diameter of which runs along the
real w axis. Thus only the pole w1 is enclosed, giv-

ing an exponentially decreasing pressure proportional
to exp[-2wI(t-R/c)J.

When 8=00 (normal to plate) the coefficient a3 vanishes,
and the only root is

WI = -i(pc/M) (4.7)

which lies in the lower halfplane and gives an exponentially
decaying pressure field proportional to expE-(pc/M)(t-R/c)], for
t>R/c. Because there are no roots in the upper halfplane the
pressure is zero for t<R/c. This root is independent of the
plate's stiffness, D, depending only on the fluid's constants
and the plate's mass per unit area.

The aforementioned behaviour of the roots can be interpreted
physically with the help of the diagram

z

R

0Q
d

in which it is posible to show that R1=R-d.sine in the acoustic

far-field. Now consider an energy packet that is injected into
the plate at time t=O: some of it will propagate to P via the
direct path (OP) in time R/c, and some of it will propagate to P
via the indirect path (OQP) in time d/c +R/c-d.sine/c, where cg

is the group velocity of the wave packet, in the plate, which is
losing energy by radiation. When these two travel times are
subtracted it becomes evident that it is possible for energy to
arrive at P by the indirect path OQP before it arrives by the
direct path OP, provided cg )c/sine. This is the condition,

assuming the group velocity is greater or equal to the phase
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velocity, for radiation, at an angle e, by supersonic straight-
crested waves travelling on a fluid-loaded plate. Thus, super-
sonic waves, on the plate, are the mechanism by which radiation
prior to time t=R/c is produced. See Junger & Feit for general
details of radiation from wave-bearing surfaces, and Crighton 18J
for a full discussion of waves on a fluid-loaded plate.

This non-rigorous treatment of the Fourier integral has
shown that the roots of the function G(mc0,w) have a physical

significance; the first root can be identified with radiation from
the excitation point, because it only contributes from time t=R/c,
the direct arrival time; the other two roots (in combination)
can be identified with surface radiation because they only con-
tribute before time t=R/c, which is only possible if energy has
travelled supersonically along the plate surface before radiating
into the fluid. Now, as the distance d (see diagram above) along
the plate increases, indirect radiation from the plate arrives
increasingly earlier than the direct radiation. Furthermore, as
d increases, the amplitude of the supersonic wave in the plate
will have decreased exponentially because of radiation and struc-
tural damping, which means that its radiation will also decrease
exponentially, assuming that it is proportional to the the wave's
amplitude. As the distance d reduces, it follows that the
indirect radiation will increase exponentially until the origin
is reached, at which point it merges continuously with the direct
radiation.

Precise details of the far-field pressure pulse will depend
on the frequency spectrum of the excitation, but general obser-
vations are possible for the case of an excitation switched on at
time t=O and then switched off at time t=T. Before the time of
the direct arrival, t=R/c, the pressure will oscillate at a
frequency whose value is dependent on the angle of observation,
the minimum value being close to the coincidence frequency. The
amplitude of this pressure will increase exponentially with time
until t=R/c, at which time it will merge continuously with the
direct pressure. For times t=R/c to t=T+R/c the pressure will be
the sum of a relatively smooth direct wave whose travel time is
t=R/c, and the oscillating indirect wave which will appear at
times to anticipate sharp discontinuities in the excitation. For
times t)T+R/c the pressure field will smoothly decay to zero.
When e=00 the prersure is zero before t=R/c; it is due only to
direct radiation at times t=R/c to T+R/c; and it decays smoothly
to zero for t>T+R/c. This description of the radiated pulse does
not permit the 'ringing', after time t=T+R/c, which was predicted
by Mackertich & Hayek; thus it supports Warham's view that their
results are in error.

Warham gives explicit formulae for the residue contri-
butions, for the case of impulse excitation, and there is agree-
ment in those areas of the analysis where overlap occurs. It
is to be hoped that a proper treatment of the stationary phase
approximation and the Fourier integral evaluation by contour
integration will be undertaken and reported later.

(c) Timoshenko-Mindlin Plate Theory

An advantage of using the fast Fourier transform algorithm
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to evaluate the integral in equation (4.1) is that different
plate theories may be used without the complication of finding
the roots of the function G(m0 ,w), which is a simple polynomial

only for Sophie Germain plate theory.

For Timoshenko-Mindlin plate theory

G(x0 ,w) = EC(Dc2-ph 3 w2 /12)(m 2 -pW 2 /KG)-phw2)/

(l+Do2 /KGh-psh 2W2/12KG)) - ipw 2ly0  (4.8)

in which G=E/2(+a) and K=10(l+a)l(12+ll). For exact linear
plate theory the function G(%,0,w) can be found from the work of

Spicer 19J.

5. NUMERICAL RESULTS

(a) Constants

The numerical results of the transient acoustics of a
steel plate in water, shown in Figures 2-11, were obtained using
the following material and geometric constants:

Steel Plate: Young's modulus 19.5xl0
1 0

Poisson's ratio 0.29
Density 7700.0
Thickness 0.05
Hysteretic loss-factor 0.01

Water: Density 1000.0
(one side only) Sound velocity 1500.0

The use of a constant hysteretic loss-factor makes the responses
non-causal (see Warham for a discussion), but this is barely
noticeable in Figures 2-11 . On each plot, where applicable, are
marked the times of the direct travel time of the leading edge of
the excitation, D=R/c, the minimum indirect acoustic travel time,
I=R.cose/c, and the direct travel time for the trailing edge of
the excitation, L=T+R/c.

(b) Near-field Acoustic Pressure

Figures 2-5 show transient sound radiation versus time,
obtained from Warham's program, for various excitations. In
each plot the angle of measurement is 6=450 . Because the
pressures are in the 'near-field', the physical interpretations
of Section 4 will be incomplete since the domains of the subson-
ic wave and the supersonic 'leaky' wave have been entered - see
Crighton [8]. Nonetheless, the results are expected to show
certain features that are present in the far-field, viz. an
oscillating indirect arrival before t=R/c, and a smooth relax-
ation to zero after the time of arrival t=T+R/C of the trailing
edge of the pulse. In the far-field the indirect arrival oscil-
lates at the frequency wr , which has been defined as the true

coincidence frequency at the angle of measurement 8, and it has
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no wel] defined beginning. In the near-field the nature of the
indirect arrival can be surmised with the help of the diagram of
Section 4b, in which the point P is now in the near-field. The
first acoustic arrival cannot occur earlier than time t=R.cose/c,
via the path OQP in which P is directly above Q; this arrival is
associated with an infinite (at least mathematically) value of
W r- The last indirect acoustic arrival is at time t=R/c, via
the path OQP in which 0 and Q are coincident; this arrival is
associated with the value of w r that corresponds to the angle

of observation, e.g. w r= 9.5kHz at e=450. Thus, the indirect

arrival has a well defined beginning, at time t=R.cose/c where
the oscillation frequency is infinite, and ends at time t=R/c
with an oscillation frequency of wr

In Figure 2a the excitation is a unit impulse whose
frequency spectrum is a constant. The distance R is 1.0m. From
the time of the indirect arrival, the pressure increases rapidly
with increasing period of oscillation; the oscillations are too
rapid to show on the figure. The pressure then decreases with
increasing period of oscillation until the time of direct travel
when it almost vanishes. These results were obtained with an
upper limit of frequency integration set to 1MHz, Warham's pro-
gram providing an additional contribution by means of an analyti-
cal formula. Figure 2b shows the results obtained without the
extra analytical contribution. The non-causal behaviour is
marked, and the early time arrival parts of the plots differ
considerably. When the upper limit of integration is truncated
at 10kHz, the maximum level (not shown) is less than unity,
which implies the dominance of high frequency surface radiation.

As a test to see whether or not steady-state conditions are
reached quickly, a 1kHz and a 10kHz sine wave excitation were
switched on for 5 cycles each. The results are shown in Figures
3a and 3b, in which the distance R is 1.0m. The plots show that
after an initial transient, time-harmonic conditions prevail
within 1 cycle. Spicer [10J has written a Fortran program for
calculating near-field pressures due to time-harmonic excitation.
This program was used to confirm that the steady-state levels
shown in Figures 3a and 3b are exactly as expected.

In order to illustrate the change in pressure shape as a
disturbance propagates from the near-field to the far-field,
a square wave was switched on for 1/2 millisecond. Figure 4a
shows the pressure at R=0.2m. After a small rapidly changing
initial transient, at the time of the indirect arrival, the
pressure rises rapidly to reach a maximum close to the time of
the direct arrival. The pressure then drops smoothly until the
indirect arrival part of the 'switch-off' occurs which causes
another rapidly varying transient, ending when the pressure drops
sharply to a negative value after which it rises smoothly to zero.
It is believed that the prevalent feature in the pressure is due
to acoustic radiation from the excitation point, and the rapidly
varying oscillations are due to radiation from the plate surface.
This view is reinforced by the plots shown in Figures 4b, 5a and
5b, which are for R=l, 5 and 25m respectively. The shape of the
pressure from the drive point is (possibly) unaltered, but it
is masked by oscillations, due to the indirect plate radiation,
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which decrease in frequency to about 10kHz, as the distance
increases to 25m. According to the Table in Section 4b, the
oscillations will have decreased to 9.5kHz by the time the
acoustic far-field has been reached. Figure 4b is a vivid illus-
tration of the pressure apparently anticipating the switching
on and off of the excitation, which feature is due, of course, to
indirect plate radiation.

(c) Far-Field Sound Radiation

A Fortran program has been written to calculate the far-
field radiation by evaluating the Fourier integral in equation
(4.1) using an application of the fast Fourier transform algor-
ithm. Details of the integration scheme chosen are not given
herein. Both Sophie Germain 'thin' and Timoshenko-Mindlin
'thick' plate theories have been included as options in the
computer program. Numerical results are shown in Figure 6-11.
The levels have been adjusted to the reference distance of lm,
and although the time scale is arbitrary it is useful to know
that the the direct arrival time has been set to time t=lms, by
the program, by use of a variable RP whose value is in the graph
caption.

Figure 6 shows transient pressures in the far-field when
the excitation is a unit impulse. In Figure 6a the angle of
observation is e=0a; the pressure is zero for time t<R/c, it
is basically a sharp spike at time t=R/c, and then it vanishes
almost immediately. In Figure 6b the angle of observation is
e=450; the pressure rises exponentially, with a 9.5kHz modulation,
until t=R/c, at which time it relaxes smoothly to zero. These
plots are in agreement with the physics described and the values
tabulated in Section 4b.

As a test to see whether or not steady-state conditions
are reached as quickly in the far-field as they are in the near-
field, 1kHz and 10kHz sine waves were switched on for 5 cycles
each. Figure 7a shows that after an initial transient, oscil-
lating at the frequency of 9.5kHz, as expected, time-harmonic
conditions are obtained within 1 cycle for the ikHz excitation.
In Figure 7b the indirect arrival is large because the excitation
frequency is close to the frequency of its oscillation. Steady
state conditions are in fact reached within 1 cycle, but this is
masked by the indirect arrival of the transient generated by the
switch-off. Calculations using standard formulae, found in Junger
& Feit, have confirmed that the correct steady-state levels have
in fact been achieved.

In Figures 8-9 the excitation is a rectangular pulse that
has been switched on for 1/2 millisecond. Figure Ba shows the
pressure at normal incidence, e=0 0 : the pressure, which is zero
before time t=R/c, rises rapidly as the leading edge reaches the
measuring position, drops slowly until the time tfT+R/c of the
switch off when it drops rapidly to a negative value, after which
it rises smoothly to zero. In Figure 8b the angle of measurement
is e=2 0 0: before t=R/c the indirect arrival due to the leading
edge of the excitation is responsible for the exponentially
increasing pressure, modulated by an oscillation of about 40kHz;
between times t=R/c and T+R/c the direct arrival is modulated by
the oscillations of the indirect arrival due to the trailing edge

- 15 -



of the excitation; for times t)T+R/c the pressure rises smoothly
to zero. Figures 9a and 9b, for e=450 and e=700, respectively,
show similar features, except that the oscillation rates are
about 9.5 and 5.5kHz. The physics Is well explained by the text
and the Table in Section 4. A comparison of Figures 5b (Harham
at 25m) and 9a (James in the far-field) shows that these plots
are very similar in shape, and in level if Warham's results are
referred to 1w using a spherical spreading correction, which
reinforces confidence in the correctness of the Fortran programs.

Figure 10 and 11 are comparisons of the transient pressure
pulses obtained from the 'thin' and 'thick' plate theories at
e=450. In Figure 10 the excitation is a rectangular pulse that
has been switched on for 1/2 millisecond, the pressure level
obtained by using 'thick' plate theory being shown in Figure 10a
and the pressure level obtained by using 'thin' plate theory being
shown in Figure l0b. The two plots are qualitatively similar; but
the 'thick' plate pressure oscillates at a higher frequency than
the 'thin' plate pressure, and it has two sharp spikes at its
leading and trailing edges. The reason for the former feature is
that the frequency w r associated with a given aspect e is higher
for 'thick' plate than it is for 'thin' plate theory. The reason
for the latter is not understood, but jump discontinuities in the
excitation appear to produce more of an overshoot in the acoustic
pulse when 'thick' plate theory is used. Also, the Fourier inte-
gral is only conditionally convergent, at times t=R/c and t=T+R/c,
when 'thick' plate theory is used and the excitation spectrum
drops only as fast as 11w; which means that it is not conclusive
that the correct answers are obtained at these times. In Figure
11 the excitation is the triangular pulse on for 1/2 millisecond:
the plots are very similar, sharp spikes being absent when 'thick'
plate theory is used because there are no jump discontinuities in
the excitation.

6. CONCLUDING REMARKS

The limited number of numerical results shown have dem-
onstrated that Warham's program is a valuable contribution to
research in transient sound radiation. The program is particu-
larly flerible because it copes with the acoustics (and the
dynamics) both at short and long ranges. Its major drawback is
its size of almost 9000 lines, and its reliance on library (NAG)
subroutines that may not be readily available. In addition to
providing bench-mark computations, this Fortran program could
be used to investigate:

(a) The build-up and eventual decay of an acoustic
energy vortex as a sine wave excitation is switched
on, for a time sufficient for time-harmonic response
to prevail, and then switched off. Spicer's E23
plots show energy vortices and Waterhouse et al 1113
give a condition for their occurrence.

(b) The linear dynamics and acoustics due to impact
by an elastic sphere. For this problem, the papers
of Akay & Latcha (53, Bolgov & Nikiforov [6] and
Heitkamper (12] are relevant.
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In the acoustic far-field it is much better to obtain the
transient pressure by evaluating numerically a Fourier integral,
obtained via a stationary phase approximation, by an application
of the fast Fourier transform algorithm. The Fortran program
which computes the far-field transient radiation is small, and
does not include any proprietary software. Both Sophie Germain
and Timoshenko-Mindlin plate theories are included in the program
as options, and 'exact' linear theory, of layered media, using
the methods of Spicer E93, could be added without too much dif-
ficulty. Thus, a comparison of predictions from 'thin', 'thick'
and 'exact' theories could be done for transient sound radiation,
in much the same way that Clement E133 has done so for the time-
harmonic case.

An ad hoc treatment of the contour of integration used to
solve the Fourier integral has shown that the poles in the integ-
rand have a physical meaning, viz. direct radiation from the
excitation point, arriving at the measuring position at time
t=Rlc, and indirect radiation from supersonic waves, coming off
the surface of the plate at oblique angles, arriving before t=R/c.
These features merit rigorous investigation. The numerical
results shown are in accordance with the physical interpretation.
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